Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## (*Z*)-5-Fluoro-3-[(1*H*-pyrrol-2-yl)methylene]indolin-2-one

#### Hongming Zhang,\* Haribabu Ankati, Shashidhar Kumar Akubathini and Ed Biehl

Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA Correspondence e-mail: hzhang@smu.edu

Received 7 November 2008; accepted 28 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.054; wR factor = 0.137; data-to-parameter ratio = 16.6.

The title compound,  $C_{13}H_9FN_2O$ , a potential neuroprotective agent, consists of an indolinone and a pyrrolyl unit [dihedral angle between the ring planes = 4.9 (1)°]. An intramolecular hydrogen bond between the carbonyl O atom and the NH group of pyrrole correlates with the *Z* arrangement of the substituents at the C=C bond. In the crystal, inversion dimers occur, linked by pairs of N-H···O bonds.

#### **Related literature**

For 3-substituted indole-2-one derivatives tested as protein kinase inhibitors, see: Sun *et al.* (2003). For derivatives with antitumor activity, see: Andreani *et al.* (2006). For derivatives with neuroprotective properties, see: Balderamos *et al.* (2008); Johnson *et al.* (2005). For related structures, see: Ali *et al.* (2008); De (2008); Zhang *et al.* (2008).



#### Experimental

Crystal data

 $\begin{array}{l} C_{13} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O} \\ M_{r} = 228.22 \\ \mathrm{Monoclinic}, \ P2_{1}/c \\ a = 7.6093 \ (5) \ \mathrm{\AA} \\ b = 6.1270 \ (4) \ \mathrm{\AA} \\ c = 22.8912 \ (16) \ \mathrm{\AA} \\ \beta = 91.390 \ (1)^{\circ} \end{array}$ 



#### Data collection

| Bruker APEX diffractometer             | 12282 measured reflections             |
|----------------------------------------|----------------------------------------|
| Absorption correction: multi-scan      | 2552 independent reflections           |
| (SADABS; Sheldrick, 1996)              | 2167 reflections with $I > 2\sigma(I)$ |
| $T_{\min} = 0.964, \ T_{\max} = 0.992$ | $R_{\rm int} = 0.022$                  |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.054$ | 154 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.137$               | H-atom parameters constrained                              |
| S = 1.10                        | $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$  |
| 2552 reflections                | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |

# Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------|------|-------------------------|--------------|---------------------------|
| $N1 - H1 \cdots O2^i$ | 0.86 | 2.03                    | 2.8711 (17)  | 166                       |
| N11-H11···O2          | 0.86 | 1.94                    | 2.6977 (19)  | 147                       |

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2008).

The authors are grateful for grants from the Welch Foundation (grant No. N-118) and the DARPA (grant No. HR0011-06-1-0032).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2132).

#### References

- Ali, H. M., Laila, M., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, 0921.
- Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922– 6924.
- Balderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. & D'Mello, S. (2008). *Exp. Biol. Med.* 233, 1395–1402.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- De, A. (2008). Acta Cryst. E64, 0562.
- Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. *Neurochem.* 93, 538–548.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, L., et al. (2003). J. Med. Chem. 46, 1116-1119.
- Westrip, S. P. (2008). publCIF. In preparation.
- Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, 02103.

supplementary materials

Acta Cryst. (2009). E65, 08 [doi:10.1107/S1600536808040178]

## (Z)-5-Fluoro-3-[(1*H*-pyrrol-2-yl)methylene]indolin-2-one

### H. Zhang, H. Ankati, S. K. Akubathini and E. Biehl

#### Comment

3-Substituted indoline-2-ones are a variety of pharmacologically important compounds such as protein kinase inhibitors (Sun *et al.*, 2003), antitumor (Andreani *et al.*, 2006) and neuroprotective properties (Balderamos *et al.*, 2008; Johnson *et al.*, 2005). We have designed, synthesized and crystallized several 3-substituted indoline-2-one derivatives to study their neuroprotective properties. In order to study on the relationship between the activity of 3-substituted indoline-2-ones and the importance of halogenated substituent at the 5-postion, the fluoro derivative was synthesized and its crystal structure is reported here. An intramolecular hydrogen bond was found between the N—H of pyrrole and the carbonyl O and a hepta cyclic membered ring was formed (Table 1) (Fig 1). Unlike the *E* arrangement of the chloro derivative (Zhang, *et al.*, 2008), thanks to the intramolecular H bond, the title compound adopted a *Z* conformation (Fig 1). Compared to the bond length C – Cl 1.736 (5) Å, the C – F is 1.364 (2) Å in the current structure, similar to other indolin-2-one compounds (Ali, *et al.*, 2008; De, 2008; Zhang, *et al.*, 2008;) which contain intermolecular N—H···O hydrogen bonds. The H-bonds link two inverted molecules, forming an octa cyclic membered ring, and a dimer is constructed (Table 1) (Fig 2).

#### **Experimental**

The title compound was synthesized by the condensation of pyrrole-2-carboxaldehyde (1 mmol) with 5-fluoro-oxindole (1 mmol) in ethanol (10 ml) in the presence of catalytic amount of piperidine (0.1 mmol). After refluxing for 3 hr, the reaction mixture was left to stand for overnight. The resulting crude solid was filtered, washed with cold ethanol (10 ml) and dried. Orange red single crystals of the compound suitable for *x*-ray structure determination were recrystallized from ethanol.

#### Refinement

All H atom were placed in calculated positions and included in the final cycles of refinement using a riding model, with distances N–H = 0.86 Å and C–H = 0.93 Å, and displacement parameters  $U_{iso}(H) = 1.2U_{eq}(N,C)$ .

#### **Figures**



Fig. 1. : A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. Dash lines indicate the intramolecular hydrogen bond. H atoms are presented as open circles with arbitrary radii.



Fig. 2. : A unit cell packing view of the title compound. Dash lines indicate the intra- and intermolecular hydrogen bonds. H atoms are presented as open circles with arbitrary radii.

## (Z)-5-Fluoro-3-[(1*H*-pyrrol-2-yl)methylene]indolin-2-one

| Crystal data                                     |                                                 |
|--------------------------------------------------|-------------------------------------------------|
| C <sub>13</sub> H <sub>9</sub> FN <sub>2</sub> O | $F_{000} = 472$                                 |
| $M_r = 228.22$                                   | $D_{\rm x} = 1.421 {\rm ~Mg~m^{-3}}$            |
| Monoclinic, $P2_1/c$                             | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 7.6093 (5) Å                                 | Cell parameters from 3595 reflections           |
| b = 6.1270 (4)  Å                                | $\theta = 2.7 - 25.4^{\circ}$                   |
| c = 22.8912 (16)  Å                              | $\mu = 0.10 \text{ mm}^{-1}$                    |
| $\beta = 91.390 \ (1)^{\circ}$                   | T = 293 (2) K                                   |
| $V = 1066.92 (12) \text{ Å}^3$                   | Plates, orange                                  |
| <i>Z</i> = 4                                     | $0.35 \times 0.24 \times 0.08 \text{ mm}$       |
|                                                  |                                                 |

#### Data collection

| Bruker APEX<br>diffractometer                                  | 2552 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2167 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.022$                  |
| Detector resolution: 83.33 pixels mm <sup>-1</sup>             | $\theta_{max} = 28.3^{\circ}$          |
| T = 293(2)  K                                                  | $\theta_{\min} = 1.8^{\circ}$          |
| $\phi$ and $\omega$ scans                                      | $h = -9 \rightarrow 9$                 |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $k = -8 \rightarrow 8$                 |
| $T_{\min} = 0.964, \ T_{\max} = 0.992$                         | <i>l</i> = −29→29                      |
| 12282 measured reflections                                     |                                        |

#### Refinement

methods

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.054$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.137$                                      | $w = 1/[\sigma^2(F_0^2) + (0.0587P)^2 + 0.3105P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| S = 1.10                                               | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 2552 reflections                                       | $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$                               |
| 154 parameters                                         | $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

sup-2

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|                    | x                            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|--------------------|------------------------------|--------------|--------------|-------------------------------|
| N1                 | 0.36941 (18)                 | 0.7704 (2)   | -0.02026 (6) | 0.0462 (3)                    |
| H1                 | 0.4156                       | 0.8783       | -0.0384      | 0.055*                        |
| C2                 | 0.3608 (2)                   | 0.7558 (3)   | 0.03865 (7)  | 0.0422 (4)                    |
| 02                 | 0.41973 (16)                 | 0.89761 (19) | 0.07266 (5)  | 0.0515 (3)                    |
| C3                 | 0.27094 (19)                 | 0.5468 (2)   | 0.05187 (7)  | 0.0395 (3)                    |
| C4                 | 0.1488 (2)                   | 0.2559 (3)   | -0.02156 (7) | 0.0457 (4)                    |
| H4                 | 0.1059                       | 0.1591       | 0.0060       | 0.055*                        |
| C5                 | 0.1325 (2)                   | 0.2144 (3)   | -0.08055 (8) | 0.0503 (4)                    |
| F5                 | 0.04936 (17)                 | 0.0275 (2)   | -0.09798 (5) | 0.0727 (4)                    |
| C6                 | 0.1934 (2)                   | 0.3515 (3)   | -0.12313 (7) | 0.0536 (4)                    |
| H6                 | 0.1788                       | 0.3157       | -0.1624      | 0.064*                        |
| C7                 | 0.2772 (2)                   | 0.5443 (3)   | -0.10659 (7) | 0.0511 (4)                    |
| H7                 | 0.3204                       | 0.6399       | -0.1343      | 0.061*                        |
| C8                 | 0.2942 (2)                   | 0.5888 (3)   | -0.04789 (7) | 0.0421 (4)                    |
| C9                 | 0.23179 (19)                 | 0.4481 (2)   | -0.00504 (6) | 0.0395 (3)                    |
| C10                | 0.2305 (2)                   | 0.4604 (3)   | 0.10429 (7)  | 0.0448 (4)                    |
| H10                | 0.1771                       | 0.3241       | 0.1019       | 0.054*                        |
| N11                | 0.3347 (2)                   | 0.7320 (3)   | 0.17745 (6)  | 0.0587 (4)                    |
| H11                | 0.3819                       | 0.8215       | 0.1535       | 0.070*                        |
| C12                | 0.2548 (2)                   | 0.5398 (3)   | 0.16222 (7)  | 0.0488 (4)                    |
| C13                | 0.1974 (3)                   | 0.4470 (4)   | 0.21346 (8)  | 0.0667 (6)                    |
| H13                | 0.1390                       | 0.3144       | 0.2167       | 0.080*                        |
| C14                | 0.2423 (4)                   | 0.5862 (4)   | 0.25906 (9)  | 0.0792 (7)                    |
| H14                | 0.2184                       | 0.5654       | 0.2983       | 0.095*                        |
| C15                | 0.3282 (4)                   | 0.7598 (4)   | 0.23562 (9)  | 0.0756 (7)                    |
| H15                | 0.3746                       | 0.8777       | 0.2564       | 0.091*                        |
| Atomic displacemen | <i>it parameters</i> $(Å^2)$ |              |              |                               |

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$   |
|----|------------|------------|------------|-------------|------------|------------|
| N1 | 0.0597 (8) | 0.0390 (7) | 0.0402 (7) | -0.0043 (6) | 0.0079 (6) | 0.0063 (5) |
| C2 | 0.0462 (8) | 0.0393 (8) | 0.0414 (8) | 0.0013 (6)  | 0.0063 (6) | 0.0043 (6) |

# supplementary materials

| O2  | 0.0673 (8)  | 0.0445 (6)  | 0.0431 (6)  | -0.0124 (5)  | 0.0075 (5)  | -0.0007 (5) |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| C3  | 0.0408 (7)  | 0.0384 (8)  | 0.0395 (8)  | 0.0016 (6)   | 0.0050 (6)  | 0.0011 (6)  |
| C4  | 0.0496 (9)  | 0.0423 (9)  | 0.0453 (9)  | -0.0009(7)   | 0.0042 (7)  | 0.0017 (7)  |
| C5  | 0.0562 (10) | 0.0442 (9)  | 0.0505 (10) | 0.0006 (7)   | -0.0014 (7) | -0.0068 (7) |
| F5  | 0.0964 (9)  | 0.0608 (7)  | 0.0608 (7)  | -0.0194 (6)  | -0.0027 (6) | -0.0137 (6) |
| C6  | 0.0669 (11) | 0.0565 (10) | 0.0374 (8)  | 0.0071 (9)   | -0.0002 (7) | -0.0055 (7) |
| C7  | 0.0663 (11) | 0.0503 (10) | 0.0370 (8)  | 0.0057 (8)   | 0.0066 (7)  | 0.0063 (7)  |
| C8  | 0.0465 (8)  | 0.0390 (8)  | 0.0409 (8)  | 0.0055 (6)   | 0.0036 (6)  | 0.0038 (6)  |
| C9  | 0.0411 (7)  | 0.0401 (8)  | 0.0374 (8)  | 0.0053 (6)   | 0.0047 (6)  | 0.0027 (6)  |
| C10 | 0.0473 (8)  | 0.0448 (9)  | 0.0425 (9)  | -0.0051 (7)  | 0.0041 (6)  | 0.0037 (7)  |
| N11 | 0.0806 (11) | 0.0554 (9)  | 0.0404 (8)  | -0.0147 (8)  | 0.0106 (7)  | 0.0001 (6)  |
| C12 | 0.0545 (9)  | 0.0523 (10) | 0.0398 (9)  | -0.0033 (7)  | 0.0046 (7)  | 0.0045 (7)  |
| C13 | 0.0903 (15) | 0.0664 (13) | 0.0436 (10) | -0.0170 (11) | 0.0087 (9)  | 0.0076 (9)  |
| C14 | 0.124 (2)   | 0.0762 (15) | 0.0380 (10) | -0.0175 (14) | 0.0131 (11) | 0.0031 (9)  |
| C15 | 0.1179 (18) | 0.0673 (13) | 0.0420 (10) | -0.0167 (13) | 0.0082 (11) | -0.0050 (9) |

Geometric parameters (Å, °)

| N1—C2     | 1.355 (2)   | С7—С8       | 1.374 (2)   |
|-----------|-------------|-------------|-------------|
| N1—C8     | 1.396 (2)   | С7—Н7       | 0.9300      |
| N1—H1     | 0.8600      | C8—C9       | 1.397 (2)   |
| C2—O2     | 1.2429 (19) | C10-C12     | 1.421 (2)   |
| C2—C3     | 1.486 (2)   | C10—H10     | 0.9300      |
| C3—C10    | 1.354 (2)   | N11—C15     | 1.344 (2)   |
| С3—С9     | 1.460 (2)   | N11—C12     | 1.367 (2)   |
| C4—C5     | 1.377 (2)   | N11—H11     | 0.8600      |
| C4—C9     | 1.385 (2)   | C12—C13     | 1.384 (2)   |
| C4—H4     | 0.9300      | C13—C14     | 1.385 (3)   |
| C5—F5     | 1.364 (2)   | С13—Н13     | 0.9300      |
| C5—C6     | 1.376 (3)   | C14—C15     | 1.365 (3)   |
| C6—C7     | 1.390 (3)   | C14—H14     | 0.9300      |
| С6—Н6     | 0.9300      | С15—Н15     | 0.9300      |
| C2—N1—C8  | 111.66 (13) | N1—C8—C9    | 108.45 (14) |
| C2—N1—H1  | 124.2       | C4—C9—C8    | 119.57 (14) |
| C8—N1—H1  | 124.2       | C4—C9—C3    | 132.66 (14) |
| O2—C2—N1  | 123.50 (14) | C8—C9—C3    | 107.77 (14) |
| O2—C2—C3  | 129.46 (14) | C3—C10—C12  | 131.79 (16) |
| N1—C2—C3  | 107.04 (14) | С3—С10—Н10  | 114.1       |
| C10—C3—C9 | 125.66 (15) | C12-C10-H10 | 114.1       |
| C10—C3—C2 | 129.26 (15) | C15—N11—C12 | 109.57 (16) |
| C9—C3—C2  | 105.08 (13) | C15—N11—H11 | 125.2       |
| C5—C4—C9  | 117.01 (15) | C12—N11—H11 | 125.2       |
| С5—С4—Н4  | 121.5       | N11-C12-C13 | 106.60 (16) |
| С9—С4—Н4  | 121.5       | N11-C12-C10 | 125.47 (15) |
| F5—C5—C6  | 117.86 (15) | C13—C12—C10 | 127.88 (17) |
| F5—C5—C4  | 118.16 (16) | C12-C13-C14 | 107.97 (19) |
| C6—C5—C4  | 123.97 (16) | C12—C13—H13 | 126.0       |
| C5—C6—C7  | 119.06 (15) | C14—C13—H13 | 126.0       |
| С5—С6—Н6  | 120.5       | C15-C14-C13 | 107.19 (18) |

# supplementary materials

| С7—С6—Н6              | 120.5       | C15—C14—H14 | 126.4       |
|-----------------------|-------------|-------------|-------------|
| C8—C7—C6              | 117.81 (15) | C13—C14—H14 | 126.4       |
| С8—С7—Н7              | 121.1       | N11—C15—C14 | 108.66 (19) |
| С6—С7—Н7              | 121.1       | N11—C15—H15 | 125.7       |
| C7—C8—N1              | 128.97 (15) | C14—C15—H15 | 125.7       |
| С7—С8—С9              | 122.58 (15) |             |             |
|                       |             |             |             |
| Hydrogen-bond geometr | v (Å, °)    |             |             |

| D—H···A                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------|-------------|--------------|--------------|------------|
| N1—H1····O2 <sup>i</sup>                     | 0.86        | 2.03         | 2.8711 (17)  | 166        |
| N11—H11…O2                                   | 0.86        | 1.94         | 2.6977 (19)  | 147        |
| Symmetry codes: (i) $-x+1$ , $-y+2$ , $-z$ . |             |              |              |            |







